Theoretical Determination of the Dissociation Energy of Molecular Hydrogen.

نویسندگان

  • Konrad Piszczatowski
  • Grzegorz Łach
  • Michal Przybytek
  • Jacek Komasa
  • Krzysztof Pachucki
  • Bogumil Jeziorski
چکیده

The dissociation energy of molecular hydrogen is determined theoretically with a careful estimation of error bars by including nonadiabatic, relativistic, and quantum electrodynamics (QED) corrections. The relativistic and QED corrections were obtained at the adiabatic level of theory by including all contributions of the order α(2) and α(3) as well as the major (one-loop) α(4) term, where α is the fine-structure constant. The computed α(0), α(2), α(3), and α(4) components of the dissociation energy of the H2 isotopomer are 36 118.7978(2), -0.5319(3), -0.1948(2), and -0.0016(8) cm(-1), respectively, while their sum amounts to 36 118.0695(10) cm(-1), where the total uncertainty includes the estimated size (±0.0004 cm(-1)) of the neglected relativistic nonadiabatic/recoil corrections. The obtained theoretical value of the dissociation energy is in excellent agreement with the most recent experimental determination 36 118.0696(4) cm(-1) [J. Liu et al. J. Chem. Phys. 2009, 130, 174 306]. This agreement would have been impossible without inclusion of several subtle QED contributions which have not been considered, thus far, for molecules. A similarly good agreement is observed for the leading vibrational and rotational energy differences. For the D2 molecule we observe, however, a small disagreement between our value 36 748.3633(9) cm(-1) and the experimental result 36 748.343(10) cm(-1) obtained in a somewhat older and less precise experiment [Y. P. Zhang et al. Phys. Rev. Lett. 2004, 92, 203003]. The reason of this discrepancy is not known.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Study on the Structure-Radical Scavenging Activity of Some Hydroxyphenols

Antioxidants are made for the struggle and reconstruction of the damaged cells, because of their ability in destroying the free radicals. On account of their importance, a theoretical procedure was applied for the study of the molecular structure and radical scavenging activity of six hydroxyphenols which have been introduced as antioxidant compounds. All geometry structures were optimized by M...

متن کامل

Theoretical Study on Glycosyl Group Effect on Antioxidant Ability of Chrysin Bioflavonoid

Antioxidants are compounds which can prevent biological and chemical substances from oxidative damage by reactive oxygen species. Flavonoids are the most important class of polyphenolic compounds that because of their antioxidant characters possess biological activities and pharmacological effects. Chrysin-6-C-fucopyranoside and chrysin-3-malonyl-6-C-fucopyranoside are mono C-glycosyl derivativ...

متن کامل

Quantum mechanics investigation of acid dissociation constant of carboxylic acids in aqueous solution

According to the Bronsted definition, any compound which has a hydrogen atom is an acid, since itmay be lost as a proton. A thermodynamical cycle is proposed to calculate absolute pKa values forBronsted acids in aqueous solution. The equilibrium of dissociation of a Bronsted acid depends onthe interaction of the acid and its conjugate base with solvent molecules. There fore the pKa valuedepends...

متن کامل

Theoretical Study of the Molecular Complexes between Pyridyne and Acid Sites of Zeolites

The main interaction between pyridine and zeolites leads to form a hydrogen bond between the N atom of pyridine and OH groups of zeolites. The present work reports a theoretical study about the structural, vibrational and topological properties of the charge distribution of the molecular complexes between pyridine and a series of acids sites of zeolites. The calculated structural parameters...

متن کامل

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study

The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...

متن کامل

Determination of the acid dissociation constants of the p-sulphonato-calix[4]arene

The acid dissociation constants of the hydroxyl groups in 25, 26, 27, 28-tetrahydroxy-5, 11, 17, 23-tetrasulphonic-calix[4]arene (SC4) were determined at 25οC by a combination of potentiometric and spectrophotometric titration method. The first and second acid dissociation constants (pKa1, pKa2) were found to be 3.19 and 12.1, which demonstrated pKa shift due to intramolecular hydrogen bonding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 5 11  شماره 

صفحات  -

تاریخ انتشار 2009